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Abstract This study evaluates low Reynolds number models of turbulence for numerical
computations on the heat transfer and fluid flow behavior in a rectangular channel with
streamwise-periodic ribs mounted on one of the principal walls. The models include kÿ ~" models
of Launder and Sharma (1974), Chien (1982), kÿ ~" model of Lin and Hwang (1998), Wilcox's
kÿ ! model (Wilcox, 1994) and Durbin's model kÿ "ÿ v2 (Durbin, 1995). The numerical
results show that all these models can predict the flowfield reasonably well, and the inclusion of the
Yap term (Yap, 1987) in the " ± equation (or ~" ± equation) can further improve the prediction in
these kÿ " models, kÿ ~" model and kÿ "ÿ v2 model. However, these models behave differently
in heat transfer computations. The kÿ ! model leads to too low a level of heat transfer and
turbulence. Among these kÿ " models and the kÿ ~" model, Lin's model with the Yap term
predicts the heat transfer level best. Durbin's model with extra v2; f equations and the Yap term
exhibits further improvement.

Nomenclature
De = hydraulic diameter
h = rib height
H = channel height
k = turbulent kinetic energy
Nu = local Nusselt number

P = pressure
P̂ = reduced pressure
Pi = rib pitch
PR = rib pitch-to-rib height ratio, Pi/h
Pr = Prandtl number
Prt = turbulent Prandtl number
Re = Reynolds number, Re � �Uref De

�
T = temperature
T̂ = reduced temperature
t = time
U = axial mean velocity
V = transverse mean velocity

w = rib width
x = axial coordinate
y = transverse coordinate
� = pressure drop per pitch

 = temperature gradient across one

pitch
" = dissipation rate of turbulent kinetic

energy
! = dissipation per unit turbulent kinetic

energy
� = molecular dynamic viscosity
�t = turbulent dynamic viscosity
� = kinetic viscosity
�ij = Kronecker delta function
y� = normalized y coordinate, �yU�

�

y� = Taylor microscale
����
�k
~"

q
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Introduction
Repeated rib-turbulators in flow passage at periodic intervals can enhance the
removal of heat transfer for many engineering applications. The flow
separation zones ahead and after the ribs generate secondary motion across the
passage so that the turbulence and heat transfer levels increase significantly.
Computations of flow and heat transfer through ribbed passage need
appropriate turbulence models and most of the computations employed high-
Re models of turbulence with the wall function approach. However, the
anisotropy of near wall turbulence and the secondary motion across the wall
sub-layer make the wall function approach inappropriate. Fewer works
(Fusegi, 1996; Iacovides and Raisee, 1997; Taylor et al., 1991) have employed
variants of low Reynolds number models of turbulence and suggested the need
for tests for more refined low-Re models. kÿ " and kÿ ! models are the most
popular models for turbulence computation, but most low-Re versions of
turbulence models are developed and evaluated for flows through smooth
passages. Applicability of these models for ribbed passages needs to be
evaluated.

There are numerous versions of kÿ " turbulent models in the low Reynolds
number form. According to the evaluations by Patel et al. (1985) for two-
equation turbulence models in low Reynolds number form, the tests with a
variety of boundary layer flows show that the kÿ " models of Launder and
Sharma (1974), Chien (1982) and Lam and Bremhorst (1981), and the kÿ !
model of Wilcox and Rubesin (1980) were found to be considerably better than
the other four models. Therefore, widely used kÿ " models of Launder and
Sharma (1974), Chien (1982), and the kÿ ! model of Wilcox and Rubesin (1980)
are selected for the present study. In addition to these models, the refined kÿ ~"
model of Lin (1998) and kÿ "ÿ v2 model of Durbin (1995) have been newly
developed with special considerations in the near wall region. Their models
demonstrate excellent improvements on various applications. For example,
fully developed plane Couette-Poiseuille flow and backward-facing flow by
Lin's model (Lin, 1998), and turbulent separated flows over a back step in a
plane diffuser and around a triangular cylinder by Durbin's kÿ "ÿ v2 model
(Durbin, 1995). It is worth applying it to the ribbed passage and checking if any
improvements can be made.

The present work intends to compare the predictions by above mentioned
low-Re turbulence models in four categories:

(1) well-known models of Launder and Sharma (1974) and Chien (1982);

(2) Wilcox's kÿ !model (Yang et al., 1995);

(3) recently developed kÿ ~"model of Lin (1998); and

(4) kÿ "ÿ v2 model of Durbin (1995).

Modification of the above models is also implemented, i.e. the addition of a
correction term to the "-equation (~"-equation) (Yap, 1987) to eliminate the
excessively high levels of near wall turbulence by most turbulence models.
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In this paper, numerical computations on the heat transfer and fluid flow
behaviour in a rectangular channel with streamwise-periodic ribs mounted on
one of the principal walls are performed based on the flow measurements by
Drain and Martin (1985) and heat transfer measurements by Liou et al. (1993).
In order to overcome the difficulty to achieve convergence in complex turbulent
flow computation with these turbulence models, the present work applies an
efficient Bi-CGSTAB algorithm (van der Vost, 1992) to solve the matrix
systems to reach stable and robust convergence (Tsai et al., 1997) so that the
performance of these models can be demonstrated by comparing the
measurements and numerical predictions.

Governing equations
Measurements reported that the flow pattern reached fully developed after
several ribs, for example, 29 ribs in Drain and Martin's work (1985), ten ribs in
Chang's work (1990). Since there were 17-19 ribs included in Liou's work (1993),
periodic fully developed condition is assumed and the simulation can be
simplified by solving the time-dependent, Reynolds-averaged, incompressible
Navier-Stokes equations for periodic fully developed turbulent flow. The
equations in Cartesian tensor notation can be written as follows:

Continuity equation

@Ui

@xj
� 0

Momentum equations

@��Ui�
@t

� @�UiUj

@xj
� ��il ÿ @P̂

@xj
� @

@xj
���@Ui

@xj
� @Uj

@xi
� ÿ �uiuj�

The Reynolds stress can be approximated by adopting Boissinesq
approximation within the framework of eddy viscosity:

ÿ�uiuj � �t�@Ui

@xj

� @Uj

@xi

� ÿ 2

3
�ijk

where � is the molecular viscosity and �t is the turbulent viscosity.
In the fully developed region, the pressure drop per pitch is a constant (�), i.e.

P�x� Pi; y� � P�x; y� ÿ � � Pi, where Pi is the pitch length. If we define
P̂�x; y� � �x� P�x; y� then we have the following relations:

P̂�x� n � Pi; y� � P̂�x� �nÿ 1� � Pi; y� � � � � � P̂�x; y�

where n is an integer and P̂ repeats itself from pitch to pitch.
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Energy equation

@��T̂�
@t
� @��UiT̂�

@xi
� @

@xi
�� �

Pr
� �i

Prt
� @T̂

@xi
� ÿ �Ui
�il

where Pr is the Prandtl number, Prt is the turbulent Prandtl number, �il is the
Kronecker delta function, l is the streamwise direction, T̂ � T ÿ 
x, and 
 is
the temperature gradient across one pitch which is defined as


 � T�x� Pi; y� ÿ T�x; y�
Pi

Turbulence models in low-Reynolds number form
Brief descriptions of the transport equations of turbulent properties for various
models are given as follows:

kÿ "model

@��k�
@t
� @��Ujk�

@xj
� @

@xj
���� �t

�k
� @k

@xj
� ÿ �uiuj

@Ui

@xj
ÿ ���"� D�

@���"�
@t
� @��Uj�"�

@xj
� @

@xj
���� �t

�"
� @�"

@xj
� ÿ �C�"1f1

�"

k
uiuj

@Ui

@xj

ÿ�C�"2f2
�"2

k
� E �t � �C�f�

k2

�"

The constants and damping functions for the models of Launder and Sharma
(1974) and Chien (1982) in the above equations are listed in Table I, and �" is the

Table I.
Constants and damping
functions for Launder
and Sharma's (1974)
and Chien's (1982)
models

Code LS CH

C� 0.09 0.09
f� exp�ÿ 3:4

�1�0:02Rt�2� 1ÿ exp�ÿ0:0115y��
�k 1.0 1.0
��" 1.3 1.3

D 2��@
��
k
p
@y
�2 2� k

y2

E 2��t� @2Ui

@xj@xk
�2 ÿ2�� �"

y2� exp�ÿ0:5y��
f1 1 1
f2 1ÿ 0:3 exp�ÿR2

t � 1ÿ 0:22 � exp�ÿ R2
t

36�
C~"1 1.44 1.35
C~"2 1.92 1.8

Rt
k2

��"
k2

��"

y� � yU�

�
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dependent variable of the transport equation. The extra term, denoted by E,
makes the value of dissipation rate at wall zero. The kÿ " models of Launder
and Sharma (1964) and Chien (1982) are well-known models and there is no
need to describe them here.

Lin's kÿ ~"model

@��k�
@t
� @��Ujk�

@xj

� @

@xj

���� �t

�k

� @k

@xj

� ��k ÿ �uiuj
@Ui

@xj

ÿ ��~"� "̂�
@��~"�
@t
� @��Uj~"�

@xj
� @

@xj
���� �t

�"
� @~"

@xj
� ��~" ÿ �C~" f1

~"

k
uiuj

@Ui

@xj

ÿ�C~"2 f2
~"2

k
�t � �C� f�

k2

~"

where

C� � 0:09; �k � 1:4ÿ 1:1 � exp�ÿ y�

10
�; �~" � 1:3ÿ exp�ÿ y�

10
�;

C~"1 � 1:44;C~"2 � 1:92; y� � y
���
~"
p�����
�k
p ; f� � 1ÿ exp�ÿ y�

100
ÿ 8y3

�

1; 000
�;

�k � ÿ 1

2

@

@xj
�� k

"

@"̂

@xj
�; �~" � ÿ @

@xj
�� ~"

k

@k

@xj
�; "̂ � 2��@

���
k
p

@y
�2;

f1 � 1; f2 � 1ÿ 0:22 � exp�ÿR2
t

36
�; Rt � k2

�~"
:

Comparing Lin's kÿ ~"model with previous kÿ "models, the differences are:

(1) including pressure diffusion term �k in the k-equation and extra term in
~"-equation;

(2) using ~" as the dependent variable of the transport equation instead of ",
" is the dissipation rate of turbulent energy which can be decomposed
into two parts, i.e. " � ~"� "̂;

(3) adopting the Taylor microscale (Tennekes and Lumley, 1972) of y� in the
damping functions.

The adopted form of f� reproduces correctly the asymptotic limit towards the
wall and avoids the singularity occurring at the reattachment point by
adopting y�.

The justifications of the use of Lin's model are given in the following
paragraph.

Moin's DNS data (Moin et al., 1988) indicates that @"@y
< 0 at the wall, and this

shows that the maximum value of " should be located at the wall. These
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necessitate the inclusion of the pressure diffusion term �k in the k-equation,
especially in the near wall region.

The inclusion of �~" in ~"-equation is to balance the molecular diffusion at the
wall. This idea was also adopted by Chien (1982) and Kawamura (1991), but
with different formulation. Lin's formulation mimics the diffusive nature of the
pressure diffusion term. Furthermore, �~" also generate the extra source for " in
the buffer zone, and the commonly adopted format ��t

� � @Ui

@xj@xk
�2 was completely

replaced.
Therefore, Lin claimed that his model not only conforms with the near wall

characteristics obtained with the direct numerical simulation data but also
possesses the correct asymptotic behavior in the vicinity of the wall. The
application of Lin's model produced correctly the skin friction and near wall
heat transfer coefficient for a two-dimensional backward-facing step (Lin,
1998).

Wilcox's k � !model

@��k�
@t
� @��Ujk�

@xj

� @

@xj

���� ���t� @k

@xj

� � ��Pk � Dk�
@��!�
@t
� @��Uj!�

@xj

� @

@xj

���� ��t� @!
@xj

� � ��D! � P! � C!�

�t � ��� k

!

where

Pk � �� k

!

2; Dk � ÿB�!k; P! � ���
2;

C! � maxf0; �d

!
�@k

@x

@!

@x
� @k

@y

@!

@y
�g; D! � ÿB!2

�� � 1; � � 0:6; Rk � 6; R� � 8; R! � 2:2; ��0 � 0:025; �d � 0:3

Ret � �

�

k

!
; a� � Rk�

�
0 � Ret

Rk � Ret
; � � 1

2

R!�0 � Ret

�r! � Ret��� ; �0 � 0:1;

B � 0:075; B� � 0:09�
5
18� �Ret

R�
�4

1� �Ret

R�
�4 ; 
2 � �@u

@y
� @v

@x
�2 � 2��@u

@x
�2 � �@v

@y
�2�:

This model is widely used and the details can be referenced in Wilcox's work
(Wilcox and Rubensin, 1980; Wilcox, 1993a, 1993b, 1993c, 1994).
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Durbin's k � "ÿ v2 model

@��k�
@t
� @��Ujk�

@xj
� @

@xj
���� �t

�k
� @k

@xj
� � Pk ÿ �"

@��"�
@t
� @��Uj"�
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� @

@xj

���� �t

�"
� @"
@xj

� � �C"1Pk ÿ �C"2"

T

@��v2�
@t

� @��Ujv2�
@xj

� @

@xj
���� �t

�k
� @v2

@xj
� � �kf ÿ �v2

"

k

L2r2f ÿ f � �1ÿ C1�
�23ÿ v2

k
�

T
ÿ C2

Pk

k
;

�t � �C�v2T:

where

�k � 1:0; �" � 1:3;C"1 � 1:3� 0:25

1� � d
2`�8

;

C"2 � 1:9;C� � 0:19;CL � 0:3;C� � 70;

` � L

CL
;C1 � 1:4;C2 � 0:3; d : distance to the closest boundary;

L � CL max�k
1:5

"
;C���

3

"
�14�;T � max�k

"
; 6��

"
�12�:

Durbin's kÿ "ÿ v2 model (Durbin, 1995) is proposed for computing non-
equilibrium, or complex, turbulent flows. In his model, the velocity scale for
turbulent transport towards the wall is v2, not k. Extra two parameters v2 and f ,
need to be solved via v2 transport equation and elliptic relaxation equations for
f . The variable v2 is a velocity scale and might loosely be regarded as the
velocity fluctuation normal to the streamlines. Also, v2 behaves as the wall
normal component of turbulent intensity near the surfaces. Impermeable
boundaries cause non-local suppression of v2, and the elliptic relaxation
equation for f is the mathematical representation of non-locality. It is designed
to use in wall-bounded flows. Good agreement between experiment and
predictions are obtained for turbulent separated flows over a backward-facing
step, in a plane diffuser, and around a triangular cylinder, and jet impinging
onto a pedestal using a revised model (Durbin et al., 1997).

Yap term
It is well-known that the energy dissipation equation of turbulence models, in
particular the low Reynolds number kÿ " model, produces too large a
turbulence length scale for separated flows. Therefore, excessively high levels
of near-wall turbulence and heat transfer are obtained. Yap (1987) introduced a
term into the "-equation (or ~"-equation) to reduce the departure from the local-
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equilibrium length scale in wall turbulence. The correction term YC, namely the
Yap term, is expressed as

YC � maxf0:83
�"2

k
�k

1:5

"

1

2:55Y
ÿ 1��k

1:5

"

1

2:55Y
�2; 0g

where Y is the distance to the closest walls. This Yap term is added to the
"-equation (or ~"-equation) for the above kÿ " turbulence models or ~"-equation
for Lin's model, so that better predictions on flow and heat transfer
characteristics can be expected.

Boundary conditions
At the inlet and outlet of the calculated flow domain, the periodic behaviour
leads to the periodic boundary conditions for the applied turbulence models, i.e.

Ui�0; y� � Ui�Pi; y�; k�0; y� � k�Pi; y�; "�0; y� � "�Pi; y�
~"�0; y� � ~"�Pi; y�; P̂�0; y� � P̂�Pi; y�; T̂�0; y� � T̂�Pi; y�;

�"�0; y� � �"�Pi; y�:

At all surfaces of the ribs and the walls of the flow channel, no-slip boundary
condition is applied and the turbulent kinetic energy k is set to zero. For the
models of Launder and Sharma (1974), Chien (1982) and Lin (1998), �" or ~" is set
to zero at wall boundaries. As for Durbin's model, periodic boundary conditions
are applied on variables of "; v2 and f at the inlet and outlet of the flow channel,
zero is assigned for v2; f ; k at the solid walls, and " is evaluated by the equation

"�y� � 2�

�

k

y2

as y approaches zero. For the kÿ ! model, periodic boundary condition is also
applied for !, and the asymptotic equation of !�y� ! 2�

B��y2 as y! 0 is applied
near the solid wall.

Numerical methods
The governing equations are discretized in finite volume approach with
staggered grid arrangement. At each control volume, the difference equations
can be expressed as

�A�p �
� vol

�t
��n�1

p � AE�n�1
p �AW�n�1

p �AN�n�1
p �AS�n�1

s �b� � �vol

�t
�n

p

where the subscript P indicates the Pth control volume, E represents the node
located at the East of the Pth node, and W, N, S nodes are located next to P node at
the West, North, and South directions respectively, A�p � AE � AW � AN � AS
and the coefficients AE � 0;AW � 0;AN � 0;AS � 0 are convective and
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diffusion terms handling by the hybrid scheme (Patankar, 1980). The difference
equations can be arranged into a linear system A� � b, where A is usually a
non-symmetric, penta-diagonal matrix.

This linear system A� � b can be solved by Gauss-Seidel iterative method,
but the rate of convergence is slow. In order to achieve fast convergence, the
Bi-CGSTAB method (van der Vost, 1992) is employed in our study.

Since the convergence rate of CG methods strongly depends on the
eigenvalue distribution of the coefficient matrix A, it is desirable to redistribute
the eigenvalue distribution by the application of preconditioned technique.
That is, we can find a matrix M, namely preconditioner, such that the
eigenvalues of Mÿ1A are a more clustered unitary, and the alternative system
Mÿ1A� � Mÿ1b instead of the original system A� � b is solved. Modified ILU
is chosen as the preconditioner in our study, i.e. M � L̂Û which is the
incomplete lower and upper factorization of the matrix A, L̂ is a sparse lower
triangular matrix and Û is a sparse upper triangular matrix.

In our study, the PISO algorithm (Issa, 1985) is employed to couple the
velocities and pressure in the governing equations, and Bi-CGSTAB method
(van der Vost, 1992) is employed to solve the alternative system
Mÿ1A� � Mÿ1b. This numerical method had demonstrated fast and stable
convergence in computations for cases of turbulent separation flows (Tsai et al.,
1997).

The preconditioned Bi-CGSTAB algorithm for solving Mÿ1A� � Mÿ1b is
described in the following.

Preconditioned Bi-CGSTAB Algorithm: (solve Mÿ1Ax � Mÿ1b)

Give x0 and r0 � bÿ Ax0

Choose r̂0 � Mÿ1r0

�0 � � � !0 � 1; v0 � p0 � 0

For i = 1, 2, 3, . . .
�i � �r̂0; riÿ1�
� � �i

�iÿ1

�

!iÿ1

pi � riÿ1 � ��piÿ1 ÿ !iÿ1viÿ1�
solve y from My � pi

vi � Ay

� � �

�r̂0; vi�
s � riÿ1 ÿ �vi

solve Z from Mz � s
t � Az

!i � �t; s��t; t�
xi � xiÿ1 � �y� !iz
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If xi is accurate enough then stop
ri � sÿ !it
i = i + 1

End for

Results and discussion
The computed fluid mean flow profiles are compared with the measurement of
Drain and Martin (1985) who performed Laser-Doppler velocimetry (LDV)
measurements of fully developed water flow in a rectangular duct with one
surface roughened by a periodic rib structure. The Reynolds number based on
the channel height is 3:72� 104, the ratio of rib and channel height is 0.2
(h/H = 0.2), and the rib pitch-to-rib height ratio (PR = Pi/h) is 7.2. Figure 1(a)
plots the ribbed channel geometry and the calculation domain. Since the
passage is long enough for repeating flow conditions to prevail over each rib
interval, the numerical flow domain covers only one rib interval and periodic
flow boundary conditions are applied. The results predicted here are obtained
using 107� 126 grid system, in which the first grid nodes next to the wall were
placed at y� � 0:3 (where y� � �yU�

� is the normalized y coordinate).

Velocity profiles
For this problem, the separation bubble downstream of the rib extends over
almost half the rib interval and a smaller bubble exists ahead of the rib. Figure
1(b) illustrates the physical coordinate system along the ribbed wall for the
following figures. Figure 2(a) compares the measured mean velocity profiles
with the computed profiles by Launder and Sharma's model. The computations
obtain the main feature of the flow field with somewhat different sizes of
separation bubble ahead of the rib (s > 0) and thicker boundary layers on the
top surface of the rib (s/h > 7.2). In this Figure, four profiles of streamwise
velocity distribution are shown, namely, s/h = 3.18, s/h = 4.32, s/h = 7.3, and
s/h = 7.7 respectively, where the positions at s/h = 7.3 and s/h = 7.7 are located
above the rib. This Figure shows that the mean velocity profiles agree well
worth the experimental data at most of the height levels, y/H, except near the

Computational Domain

OutletInletFlow

(a)

(b)

Pi

s/h=0 s/h=6.2 s/h=9.2

s/h=8.2ws/h=7.2

h

w
h

x

H

Figure 1.
(a) sketch of
computational domain;
(b) coordinate system
along the principal wall
(w = h, H/h = 5, PR =
Pi/h = 7.2)
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Durbin’s Model
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Experiment (Drain and Martin, 1985)
Computed
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Figure 2.
Streamwise velocity

profiles using
(a) Launder and
Sharma's model;

(b) Chien's model;
(c) Lin's model;

(d) Durbin's model;
(e) Wilcox's kÿ ! model
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surface wall. For this case, the reattachment point occurrs approximately at
s/h

.
=. 4.32, and the computed separation bubble is larger than the measured

one. Moreover, at s/h = 7.3, the computed boundary layer is thicker than the
measured layer. Figure 2(a) also shows that the addition of the the Yap term in
the "-equation improves the prediction of the reversed flow field using Launder
and Sharma's model. Figure 2(b) plots the flow field obtained by Chien's model.
Differing from the previous model, a smaller separation bubble is obtained in
this model. Similar to the model of Launder and Sharma, computed boundary
layer on the top of the rib is thicker than the measured value. Again, the
addition of the Yap term in the "-equation improves the prediction of the
velocity profile at all four stations. As Lin's model is applied, a smaller
separation bubble than the measured one is also observed as the velocity
profiles at s/h = 3.18, s/h = 4.32 indicate (Figure 2(c)) and slower developments
of the velocity profiles on top of the rib surface are shown at s/h = 7.3, s/h = 7.7.
There is little difference in velocity distributions by Chien's and Lin's models.
Although Lin's model has special treatment to obtain the correct turbulence
properties in the vicinity of the wall, only slight change on the velocity profiles
is obtained by the addition of the Yap term. Durbin's model predicts the
velocity profiles as well as Chien's and Lin's models, although extra terms of v2

and f are calculated to evaluate the time averaged properties (Figure 2(d)).
Besides, the Yap term is also needed to achieve better prediction as the
kÿ "ÿ v2 model is used. Wilcox (1993a, 1993b, 1993c, 1994) had performed a
series of computations and demonstrated that the kÿ !model was accurate for
boundary layers with adverse pressure gradient and suggested the use of the
kÿ ! model for studying transition and surface roughness effect. In this case,
it is found that the predicted profiles at various locations agree well with the
measured profiles, and slight improvement is observed compared to those
predicted profiles in the above four kÿ " models without the Yap term (Figure
2(e)). Since the Yap term is an additional term in the "-equation (or
~"-equation), the addition of the Yap term in the kÿ ! model is not applied. In
conclusion, the addition of the Yap term in the models of Launder and Sharma,
Chien, Lin, and Durbin improves the velocity computation by enlarging the
separation bubble after the rib, and reduces the boundary layer thickness at the
top surface of the rib. It implies that adding the Yap term corrects the
turbulence length scale near the wall and takes care of the non-local-
equilibrium of the flow.

Temperature contours and local Nusselt number distribution
The computed temperature contours and the local Nusselt number
distributions are compared with the experiment of Liou et al. (1993). They
employed the real-time holographic interferometry technique to measure the
time-dependent temperature field in the ribbed duct. The computation domain
and the grid system are the same as in the previous work. The first grid point
next to the wall is located at y� < 0:1 on Reynolds number of 1:26� 104.
Figure 3 compares the measured temperature contours with the computed ones
by various models. The patterns of temperature contour at regions behind and
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ahead of the rib illustrate the overall temperature field and the degree of heat
transfer. Comparisons of Figures 3(a) and 3(b) indicate that the addition of the
Yap term indeed improves the contour pattern especially the regions behind
and ahead of the rib if Launder and Sharma's (LS) model is employed. The
contour lines' pattern and their gradient under the line of T̂ � 32 should be
regions of emphasis to evaluate the performance of the models qualitatively.
Chien's model without the Yap term predicts temperature contour pattern
better at the regions ahead of the rib than the LS model and improves
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somewhat at the region behind the rib if the Yap term is added. As we compare

the contours in Figure 3, Durbin's model and kÿ ! give the best matches with

measured lines and Lin's model with the Yap term performs reasonably well.

Figures 4(a)-4(e) present the measured and computed Nusselt number

distributions (where Nus � 0:023 Re0:8 Pr0:4) by various turbulence models.
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Figure 4(a) shows that the model of Launder and Sharma greatly over-predicts
the Nusselt number level and the value reaches its maximum too slowly if the
Yap term is not included. The level of Nusselt number distribution is lowered
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down to the level of measurement in most parts of the axial locations if the Yap
term is included. Even with the Yap term, serious discrepancy between the
measurement and computation is observed near the upstream corner (s/h = 0),
where heat transfer level is seriously underestimated. The same discrepancy
occurs at the corner before the rib (s/h = 6.2). However, it is interesting to note
that the computed heat transfer coefficient fits well with measured distribution
on all surfaces of the rib if LS model when the Yap term is employed. The
predicated Nusselt number level by Chien's model agrees with the measured
level but with different shapes if the Yap term is not included (Figure 4b) and it
is noted that the maximum value of Nu is reached too early (s/h � 1). The
predicted level is somewhat lower than the measured level after the flow
recirculation zone (s/h � 1.6) if the Yap term is employed in this model. The
overall Nusselt number distribution pattern along s is agreed fairly with the
measurement with some discrepancy. Lin's model obtains the Nusselt number
distribution with improvement both in distribution shape and magnitude
(Figure 4(c)) except the Nusselt number distribution reaches its maximum too
early (s/h � 1). This is partly due to the correct near-wall turbulent properties,
resulting from the satisfaction of the asymptotic limit in the vicinity of the wall.
With Lin's model and the Yap term, the heat transfer level is correctly
calculated starting from the upstream corner (s/h = 0), but the level is gradually
underestimated as the flow goes more downstream (s/h � 2.0); however, the
heat transfer coefficient on the rib surface is correctly predicted. With extra
parameters of v2 and f , Durbin's model obtains the Nusselt number level higher
than the measured level along the wall and on the surfaces of the rib without
the Yap term in the "-equation, but the distribution shape is much improved.
The prediction of the heat transfer level is reduced to the measured level in
most part if the Yap term is appended to the "-equation (Figure 4(d)). Although
the kÿ ! model predicts the flowfield well in the case of Re = 37,200, under-
prediction of heat transfer level with uniform discrepancy from the measured
level is observed downstream of the rib, i.e. s/h = 0 to 6 (Figure 4(e)). Good
prediction of the heat transfer level on all faces of the rib is achieved. These
Nusselt number distributions using various turbulence models reveal that
Durbin's model with the Yap term in "-equation provides the best simulation in
local Nusselt number distribution. Two major conclusions are:

(1) These turbulence models can predict the flowfield well away from the
wall surface as shown in Figure 2, but they give large variations of heat
transfer predictions. Lin's model is the best among kÿ " models.
Durbin's kÿ "ÿ v2 model offers some further improvement, and the
kÿ !model does not yield the desired level of heat transfer coefficient.

(2) The addition of the Yap term to the "-equation reduces the level of heat
transfer coefficients by all models; it implies that the correction of the
turbulence length scale near the wall depresses the turbulent diffusion
and thus the heat transfer process. This phenomenon can be verified by
the distributions of turbulent properties.
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Turbulent kinetic energy contours
Since the kÿ " models use �t � �C�f�k2=�" as the eddy viscosity, the high
values of k in the flowfield lead to high heat transfer predictions. The function
of the Yap term in the "-equation is mainly to reduce the excessive turbulent
energy so that the heat transfer level can be reduced. The behaviour of heat
transfer computations can be viewed and explained by the contour of turbulent
kinetic energy.

Figure 5(a) plots the computed turbulent kinetic energy contours using
Launder and Sharma's model. Two points at x/h = 0 and 6.2 with y/H = 0.2 are
singular points. The levels of turbulent kinetic energy are greatly reduced
especially at the flowfield near the rib and wall as the Yap term is applied
(Figure 5(b)). The predictions of near-wall turbulence can be improved by Lin's
model and the turbulent kinetic energy is enhanced near the wall surfaces
(Figure 5(c)). However, it does not consider the non-equilibrium condition
within the flowfield and over-predicts the level with non-smooth pattern,
therefore, the inclusion of the Yap term which considers the non-equilibrium
phenomena cuts down the turbulent kinetic energy level and smoothes out the
distribution (Figure 5(d)). The improving turbulence very close to the wall can
explain why Lin's model with the Yap term best predicts the heat transfer
coefficient among all kÿ " models employed. Figure 5(e) plots the turbulent
kinetic energy contours calculated by Durbin's model; smooth distributions are
observed. It may explain the role of v2; f terms. The adoption of the Yap term in
"-equation again reduces the levels of turbulence significantly near the rib and
wall surface (Figure 5(f)). The correct distribution of turbulent kinetic energy
yields the correct heat transfer level. The computed turbulence using the kÿ !
model also shows smooth contours (Figure 5(g)) with levels much lower than
levels using kÿ " models without the Yap term. The low level of turbulence
leads to a low level of heat transfer.

Conclusions
In this study, various versions of low-Reynolds number turbulence models are
evaluated by detailed comparisons of the computed and measured flow and
heat transfer characteristics in two-dimensional rectangular channel flow with
ribbed passage. All the low-Re models tested exhibit the similar performance
on the calculation of core flowfield, but behave very differently on the
calculations of heat transfer characteristics.

Lin's model with the Yap term leads to the best prediction on heat transfer
level among all kÿ " models tested because his model adopted the Taylor
microscale in the damping functions and the inclusion of the pressure diffusion
terms in both the k and ~" equations. His modification gives the correct
behaviour in the vicinity of the wall. The near-wall treatment of the v2 ÿ f
system of equation helps Durbin's model perform even better than Lin's model
on the calculation of heat transfer. Wilcox's kÿ ! model underestimates the
heat transfer prediction and needs improvement.
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